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A METHOD OF SOLVING THE HEAT-CONDUCTION PROBLEM FOR SIMPLE
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The temperature is expressed as the sum of integrals of a particular
form. Expressions for the required time functions are determined in
accordance with prescribed boundary and contact conditions by means
of the Laplace transformation. Sample solutions are given.

1. The one~dimensional heat-conduction problem
for an n-layered, unbounded plane wall, unbounded
cylinder, and sphere with constant thermophysical
coefficients in each layer can be written in the fol-
lowing way:
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where i =1, 2, ..., n; Rj-;< v < Ry; R{~y» Rjare
the coordinates of the boundary surfaces of the layer
{Fig. 1) ; tj(r, 7) is the temperature of the i-th layer
at point r at instant 7; a; is the thermal conductivity
of the i-th layer; gj(r, 7) are prescribed functions;
« =0, 1, 2, respectively, for a plate, cylinder, and
sphere, The initial and boundary conditions are:
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&, Up» B Py are numbers, @o(r) and op{T) are pre-
scribed functions of time. On the contact surfaces bhe-
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Fig. 1. n-lavered wall.

tween the layers, the following conditions are pre-
scribed:

Ry Tl Ry 1), i=1,2, ...
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ar or
A: is the thermal conductivity in the i~th layer. We

1
seek the solution in the form
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For a plate v = 0, and for a cylinder and sphere v = 1.
In expression (7) we have omitted the subscript w.

Fig. 2. Scheme for Eq.
(29).

Where necessary, the textwill indicate whether the sys-
tem (7) refers to a plate, cylinder, or sphere. K;l(r,
7,&) are prescribed functions satisfying the homoge-
neous heat-conduction equation, i.e., when in (1)
g;{r,7) = 0, Fy, H;, J; are integrals of known form
satisfying the homogeneous heat-conduction equation;
G; satisfies Eq. (1). The integral F; satisfies the ini-
tial condition (2), and integrals G;, H;, and J; satisfy
the zero initial condition. With the stated conditions
expression (7) will be a solution of Eq. (1) with the
initial condition (2). To solve the problem with 2n
boundary and contact conditiens (3)—(6), we must de-
termine n sums H;j + Jj containing the integrand of 2n
unknown functions y;(7) and ¥;(r), for which we put
expression (7) in (3)—{6). We obtain the sytem of
equations

ag(Hro = J10) + B (Hi, 0+ 1, 0) = Ay
HitA-duy — Hay — o, A,
H1.1+J1'1—-—;‘:2~(H2/1+Jz/1) = Ay,
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where

Ap = 94 (v} —ay (Fiso + Gio) — Bo (Fi,a + Gio)
for k=1,2, ..., n—1;
Ay == Frpr, 2 4 CGrtr, o — Fr, 1 —Gr, 1

A
Ay = —}:‘—*-‘ (Fatsn + Crpym)—Frpp — Geyas
k

Asn = 94 (1) =& (Frjn + Gujn) — Bu (Fr, 1 + G, n)-

The expressions of system (8) contain the following
symbols. The values of the integrals F,, G;» Hj, and
J; at r = Ry are denoted by Fj g, etc.; the values of
a/0r Fis Gis Hj, Jj at r = Ry are denoted by Fj /., and
so on. We denote the unknown functions xi(t) by xgi-1,
;(1) by x,;, functions Ki{r, 7,£) by Kjpz» their ex-
pressions at r = Ry and § = Ry, by K;p 0 and the val-
ues of 8/dr Kir¢ by Miri‘ After applying the Laplace
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where d is 2 determinant composed of terms of the un-
expanded matrix (2); d; is 2 determinant obtained by
replacement of the j-th'column in the determinant d by
a column of free terms of the system for the images.
Since Hj = Kjy., j_4 X2i_4 and Jj = Kjpj X2i, then, re-
versing the Laplace transformation, we obtain
1
H]'}L jf =—-X
2m i
g4-i00 .
x Kir, =1 %ej—1 + Kjpj%y) expstds,

¢—ibD

(11)

where s is a variable in the complex region; o is the
value on the real axis forming the left boundary of the
region of regularity of the integrand.

2. We can select the following functions K; (r, 7 &)
which satisfy the above conditions for the integrals
from (7).

© For a plate
transformation F(s) = Oif(t) exp(—sTt)dt to the origi-
. s . 1 —5)?
nals, the lef.t and right sides of .Eqs. (8), and using K% 8= exp {_ (r—3y } . a2)
the convolution theorem we obtain a system of equa- 2V ame 4o
tions for the unknown functions %, . The bar above F (12)
the letter denotes the Laplace image of the correspond- rom
; . K R _ e
ing functions. The expanded matrix of this system has MG, T, B = — r :.% —exp [ {r gll 13
the form 4Vralte | dax |
by b 0 0 0 0 0 0 A
Ruo Rlll —Rzu “Rmz 0 0 0 0 A”
— — Ao — Mo -
- M My, -2 My, — = Mo 0 0 0 0 A
’;} Ay 1
|
o 0 ° . . ° 0 0 .
0 0 . [} [} [ 0 0 [}
0 0 0 0 RnMI, n—1i, n—2 —Kn—l, n—1, n—1 '—Rn, n—1, n—1 —Rn, n-1, n Zzn-ﬂ
|
|
; — = — y Y— -
i) H 0 0 0 Moy, nes, ez Mooy, n~1 am1 kl"’ My et a1 — y e Mp -1, n Ay
; n—1 n—1
%
0 0 0 0 0 0 bon, 2a—1 ban, 2n Azn ©)
|
The first and last lines of the unexpanded matrix According to [1]
contain two, and the rest four, nonzero terms. b,; = £
=, R Myor+BoKy ) K S e B Lk 1S Vel GRS VS
=ay,Mygy + BoK 1005 by = “(ﬂ101+ﬁoKloxv b2n, 2n—1=a,Mn, n, n—1+ K, v, 8= 9 VZTS Xp V‘a_ .
T ﬁ,,kn. n, n--l, [)2:1. 2n '-"-(men‘ n. n + ﬁn}?n‘ n,ne The SOllltiOYl ‘ !
of the nonhomogeneous system for the images can be When r < £

obtained {from the Cramer formulas

X dp

) (10)

M(r, v, 5= éé%—exp {—gv—_‘_; 1/—5} , (15)

3
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whenr > ¢

Mir, v, 8 =—

exp {—- rV—a_:E ]/'s} . (18)

The limiting values of IVIi when r — £ are obtained
from formulas (15) and (16) withr = £.
For a sphere:

i

Kl = 9= 5 11/‘71% exp{— (’4;?2}, (17)
M wY=—(D—K( v, (8)

D — V%-‘% e - “4;?2},
R 5 &)= 2V—sr exp{ ”ﬁ;‘ V?} (19)
i v = D—K,(. 0 9).  (20)

The value of D is the same as the value of Mj(r, 7,£)
for a plate from formula (13) and, hence, the value of
D is determined from formulas (15) and (18) . If we use
function (17) and Ry = 0, then condition (3) is re-

placed by
at, (0,
_I«J_._T) = 0. (21)
ar

Here oy = 1, By = 0, and the terms of the first line
of the matrix (9) can be replaced by the following:

4 ,-v—-—hrgr’ —(Fro+ Gio)l,
— 1
by, =—lmrM,,, = ——,
1L oo 100 2 l/als
1))., = — lim fz.M—lﬂl = I,——— exp_‘RlV—'s— .
- r-0 2 l/ a,s ' 4

If Ry = 0, then, assuming solution (7) continuous in
the region bounded by the surface r = Ry, condition(3)
can be eliminated and the problem solved for 2n — 1
contact and boundary conditions and 2n — 1 unknown
functions. In the first layer we assume X; = H; = 0. In
system (8) the first line and Hy,; and Hy/j in the second
and third lines are omitted. Matrix (9) is accordingly
reduced to the first line and the first column. In the
case of the reduced system the finiteness of t,(0, 7)
can be ensured by the function

r—8*)
e
2V amrr

lv

97\

—I-; (22)

exp{—
K] (l’, T E): 0

4a,

function (17) is not suitable.
For a cylinder

. Py, [k
Kot 18 - —expl— ZEE ) (23)
T T | °(_ 27
l j rZ 1 EZ\
M (r, T, §) = —S——exp{— L x
M, (r, t, &) 4‘1?:2 Pl 4t J

{gl ( Qar)—’[°( ;f,_ )} (24)
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Here and below Iy(z), 1j(z), Ko(z)* are modified Bes-
sel functions of the first and second kind, respectively,
and of order indicated by the subscript. Whenr > ¢ >

> 0,(r +£)/20a) V2> (r = £)/2(ap) /2 5> 0, and, hence,
from [2]

Rin= )=~ K,,(’Vg) (EVV;) (25)

When ¢ > r > 0

K,(r, =, ) :—;—KQ (g—VVT‘-‘f\)I“ (il_/__‘/;—i) . (26)

Assuming that it is permissible to alter the order of
integration with respect to 7 and differentiation with
respect to r, we can write M; (v, 7,£) = 8/0rKj(r, 7, ¢).
Hence, whenr > £ > 0

W, g)—* S K, ('ll//-af) (gl}/b}) (@7)

(3

when§ >r > 0

Mir, 1, &) = ]:l_ﬁ K, (El}/__;)ll (’VV_;) 28)

The limiting values of functions Ki and M; when r — ¢
are obtained directly from formulas (25)—(28). The
formula for Kj (£, 7, £) is given in [2]. We note that
differentiation with respect to the parameter £ of the
two sides of the equation

VK (& v gexp(—sndr =
0

(52 (52)

gives a value of M; (¢, 7,¢) equal to the half-sum of
the values from formulas (27) and (28) when r — £.
Function (23) ensures the finiteness of t,(0,7). Hence,
if Ry = 0, it is possible and convenient to eliminate
the boundary condition (3) and to use the reduced sys-
tems (8) and (9) with changes similar to those indi-
cated for the sphere.

3. Functions (12), (17), and (23) allow the use of
operational caleulus theorems, which facilitate the
determination of the originals (11) in many cases.
Using the Laplace theorem, we can derive the recur-
rent formula, by which we can represent the determi-
nant of the unexpanded matrix (9), i.e., the determi-
nant of the system for the images d = |d nI, by a sec-
ond-order determinant. From the scheme in Fig. 2,
in which the nonzero terms are denoted by black dots,

we can obtain:
{dy| =A—B, n=2 3, ..., (29)

where

1bonr, 2nt bos—
A=|dyuon]! 9n—1, 2m—1 Don—s, 2n

)

H ban. - b2n, 2n

bZrt—Q, 2n—1 b2fl~—~2. 2n

B = ’ dan_1)

b2n. 2n-—1 b?n. on
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The determinant is formed from ldz(n-1)! if
in the latter the terms of the line of numbers 2(n ~ 1)
are replaced by terms of the line of numbers 2(n ~ 1) +
+ 1 from the same columns. The analog of formula
(29) for the case where the first lines and columuns in
matrix (9) are reduced is obtained from the scheme
in Fig. 2 with the same reductions. The subscripts,
numbers of lines, and columns are reduced by unity.

We can show that as a function of variable s, the
determinant d # 0. Formulas (10) give the only values
for the images Ej . In general, the considered problem
has a single solution, since for the difference of two
solutions of Eq. (1), obtained for the same conditions,
functions g; and the right sides of conditions (2)—-4)
are zero. In this case the transformed system (8) will
give all X; = 0. Hence, the difference of the solutions
will be zero.

Example No. 1. Data: n = 1, Ry = t(r,0) = gy(r,
Ty = 840, 7)/6r = 0, 8t,(Ry, 7)/0r = g = const.

Solution. a) w = 0. 2. Tt follows from the prescribed
conditions that ¢g = a; = 1, B¢ = 8y = 0.

System (8) Matrix (9)
Hig +Ji0=0 Mgy My | 0|
Hjp+Jin=gq Muo My ‘31

- zijT/le PO EM—wo

Xl - ‘d] ’ ‘Pl = T y

H: + 71 =21—R1r0 -+ 1I’lRm =

— E@IOOEIH - @101 Klro .
Mygg My — My Mig

Substitution of functions K; and M; from formulas
(14)—(16), (19), (20) in the last expression gives on
the right the images for a plate and sphere, agreeing
with those obtained in [1]for the same problem. Hence,
we can use the inversion of these images from [1].

b)w=1, ag =@ =1, 8y = §; = 0. The reduced
system (8): J;/; = q - The reduced matrix (9):
Mg 1 Qi 9y =a: Myp Ty = 3Ky = QBypy/Myyy- Sub-
stitution of functions K; and M; from formulas (26)
and (28) in the last expression after simple transfor-
mations gives an image corresponding to that obtained
in [1] for the same problem. Hence, we can use the
inversion obtained there.

Example No. 2. Data: w =0, n= 2, t;,,(r,0) =
=gufr, 1) = R = t2(Rz, 7) = 0, t4(0, T) = te = const.
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Solution. It follows from the prescribed conditions
that: Qy = Q3 = 0, Bo =f = 1.
System (8)
Hio+ Ji,0 =1,
Hiy+Ji,10—Hy — Jo1 =0
A
Hyi+Jin— —};2—(1'12/1 + Jo)=0

1

Hyz + J2,2 =0
Matrix (9)

1 2V,

e —
Vs
e 1 —qg —aqey 0
—e I m —me, 0
s 1 0

Matrix (9) is given after multiplication of the first
and second lines by 2(as) 1/2, the third line by 2ay,
and the fourth by 2(a2s)1/2:

el=exp——Ri)_/‘.; , €y = €Xp — _ﬁBz_—“/%)—V?’
=) =i
The solution for the images is
(9= Ty + T, = - = o Ry
ta(r, ) =Hy + T, =.d_3£_<_u§_‘?@r_2 _

Substitution in the last expression of the expanded val-
ues for d and dj and the values of K, . from formula
(14), and the reduction of the exponential function to

a hyperbolic one after matching the employed coordi-
nate systems gives expressions similar to those ob-
tained in [1] for the same problem. Hence, we can use
the formulas given there for the inversions from t,
and t3.
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